
Human-Interactive Subgoal Supervision for Efficient Inverse
Reinforcement Learning

Xinlei Pan

University of California, Berkeley

Berkeley, California, USA

xinleipan@berkeley.edu

Eshed Ohn-Bar

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

eshedohnbar@gmail.com

Nicholas Rhinehart

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

nrhineha@cs.cmu.edu

Yan Xu

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

yxu2@andrew.cmu.edu

Yilin Shen

Samsung Research America

Mountain View, California, USA

yilin.shen@samsung.com

Kris M. Kitani

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

kkitani@cs.cmu.edu

ABSTRACT
Humans are able to understand and perform complex tasks by

strategically structuring the tasks into incremental steps or sub-

goals. For a robot attempting to learn to perform a sequential task

with critical subgoal states, such states can provide a natural oppor-

tunity for interaction with a human expert. This paper analyzes the

benefit of incorporating a notion of subgoals into Inverse Reinforce-

ment Learning (IRL) with a Human-In-The-Loop (HITL) framework.

The learning process is interactive, with a human expert first pro-

viding input in the form of full demonstrations along with some

subgoal states. These subgoal states define a set of subtasks for the

learning agent to complete in order to achieve the final goal. The

learning agent queries for partial demonstrations corresponding to

each subtask as needed when the agent struggles with the subtask.

The proposed Human Interactive IRL (HI-IRL) framework is evalu-

ated on several discrete path-planning tasks. We demonstrate that

subgoal-based interactive structuring of the learning task results in

significantly more efficient learning, requiring only a fraction of

the demonstration data needed for learning the underlying reward

function with the baseline IRL model.

KEYWORDS
Human-in-the-loop; Inverse Reinforcement Learning; subgoals

1 INTRODUCTION
Teaching robots to perform a sequential, complex task is a long-

standing research problem in robot learning. For instance, consider

the task of parking a car into a narrow slot as shown in Figure 1. The

autonomous vehicle may be taught to sequentially move towards

the target across roads while avoiding obstacles such as other cars

and white lines in the environment. One key problem that arises is

that while it can be easy for the car to travel on roads, the car might

struggle locating a specific turning point so that it can fit within the

narrow parking slot, or struggle avoiding hitting other cars when

it turns around. These issues arise because there are certain critical

states, namely, subgoal states, that the agent must visit in order

to complete the entire task. In this example, the car must turn left

somewhere before it reaches the empty parking space.

Leveraging human input is one way to provide information that

could be helpful for learning agents, like robots, to reach important

Figure 1: We develop a framework for training agents that
can perform complex sequential tasks with a set of critical
subgoals, such as when parking a car. In the example sce-
nario, the car must be first positioned in a certain set of
states before being able to continue and complete the goal.
By interactively leveraging information regarding subgoal
states and subtask demonstration as needed from a human
expert, our proposed approach is shown to result in more
efficient learning of the underlying reward function.

subgoal states. Specifically, a human expert can provide demon-

strations of possible trajectories to go through these critical states

for the robot to follow. This type of learning, termed broadly as

apprenticeship learning [1, 10], is a popular approach for leveraging

human input.

Unfortunately, expert demonstrations might not address all of

the learning challenges for the following reasons: (1) Data Spar-
sity - While an expert can provide demonstrations of the entire

task, these demonstrations are usually collected without consid-

ering the learning process (i.e. the structure of the task and diffi-

culties of individual parts). Due to lack of enough demonstrations

on some critical states, figuring out the way to go through them

can still be difficult, which can prevent overall success. Therefore,

complex sequential decision-making tasks usually require a signifi-

cant amount of demonstrations to learn a reward function [15]. (2)

Burden of Human Interaction - Especially in the case of human

experts, constant human robot interaction is very costly and should

be minimized. Unfortunately, methods like online imitation learn-

ing approaches often assume that the expert is always providing

demonstrations during the entire learning process [12]. While this

may be reasonable for some problems, it maybe too impractical for

many other applications. (3) Data Redundancy - A full demon-

stration might not be needed for a learning agent equipped with

Figure 2: Diagram of our proposed approach. A human-expert can leverage subgoal states in order to efficiently interact with
the learning process. Human will first provide a full demonstration covering the entire task (from A to D, these states are
landmarks states in the task and there are other intermediate states not shown here), and define subgoals (B and C) and
subtasks (from A to B, B to C and C to D). Then the agent will attempt the human-defined subtasks. Next, the human will only
provide subtask demonstration where the agent fails. In this example, the human expert first demonstrates the entire task,
and let the agent learn to perform the task. However, the agent may only finish the subtask from A to B (smiley face) but fail
on the subtask from B to C (sad face), and stop at C. Then the human expert will demonstrate the subtask (B to C) that the
agent failed on, and let the agent learn again. This process will repeat until the agent learns to perform the entire task.

a partial model. Given a small number of expert demonstrations,

the learning agent may already know how to perform parts of the

task successfully while struggling only in certain situations. In this

case, it is more efficient to know where the agent fails and provide

specific demonstrations for the part where the agent fails.

We make the observation that human experts can provide high-

level feedback in addition to providing demonstrations for the task

of Inverse Reinforcement Learning (IRL). For example, in order to

teach a complex task consisting of multiple decision-making steps,

a common strategy of humans is to dissect the task into several

smaller and easier subtasks [9] and then convey the strategy for

each of the subtasks (see Figure 2 for an example). It is reasonable

that by incorporating this kind of divide-and-conquer high-level

strategy coming from human’s perception of the task, IRL can

be more efficient by focusing on subtasks specified by human. In

addition, by dividing a complex task into several subtasks using

human’s perception, it will be easier for humans to evaluate the

performance of the current agent. Since the agent may already be

able to perform well on some of the subtasks, a human expert only

needs to provide feedback on subtasks that the agent struggles

with.

We propose a Human-Interactive Inverse Reinforcement Learn-

ing (HI-IRL) approach that makes better use of human involvement

by using structured interaction. Although it requires more infor-

mation from the human expert in the form of subgoal states, we

demonstrate that this additional information significantly reduces

the required number of demonstrations needed to learn a task.

Specifically, the human expert will provide critical subgoals (strate-

gic information) the agent should achieve in order to reach the

overall goal. Thus, the overall task is more "structured" and consists

of a set of subtasks. We show that by using our sample efficient

HI-IRL method, we can achieve expert-level performance with sig-

nificantly fewer human demonstrations than several baseline IRL

models. Additionally, we notice that the failure experience obtained

by the agent may also be helpful to learn the reward function since

the failure experience tells the agent of what not to do. We lever-

age learning from failure experience to improve reward function

inference.

2 BACKGROUND
Maximum Entropy IRL. IRL typically formalizes the underlying

decision-making problem as a Markov Decision Process (MDP). An

MDP can be defined asM = fS;A;T ; r g, where S denotes the

state space, A denotes the action space, T denotes the state transi-

tion matrix, and r is the reward function. Given an MDP, an optimal

policy π� is defined as one that maximizes the expected cumulative

reward. A discount factor γ is usually considered to discount future

rewards.

In IRL, the goal is to infer the reward function given expert

demonstrations D = fd0;d1; � � � ;dN g, where each demonstration

consists of state action pairs di = fsi0;ai0; si1;ai1; � � � ; sik ;aik g.

The reward function is usually defined to be linear in the state

features: r = θTϕ„s” = θT fs , where θ is the parameter of the

reward function, ϕ is a feature extractor, and fs is the extracted

state feature for state s . In maximum entropy IRL, the learner tries

to match the feature expectation to that of expert demonstrations,

while maximizing the entropy of the expert demonstrations. The

optimization problem is defined as,

θ� = argmax

θ
�

Õ
di

P„di jθ ” log „P„di jθ ””; (1)

subject to the constraint of feature matching and being a probability

distribution, Õ
di

P„di jθ ”fdi = ˜f D ; (2)

Õ
di

P„di jθ ” = 1 and P„di jθ ” � 0; 8i : (3)

2

The expert’s feature expectation can be written as

˜f D =
1

N

Õ
di 2D

kÕ
t=0

fit : (4)

Following current reward function θ , the policy π can be inferred

via value iteration for low dimensional finite state problems. Then

following π , and given initial state visitation frequency Ds;0 =

P„S0 = s” calculated from D, the state visitation frequency at time

step t can be calculated as,

Dsi ;t =

jS jÕ
k=0

jA jÕ
j=0

Dsk ;t�1π „sk ;ak; j ”T „sk ;ak; j ; si ”: (5)

Here π „sk ;ak; j ” is the probability of taking action ak; j when the

agent is at state sk , and T„sk ;ak; j ; si ” is the probability of transiting

to state si when the agent is at state sk and taking action ak; j . The

summed state visitation frequency for each state is then Dsi =˝
t Dsi ;t . The feature expectation following current policy π can

be expressed as

f π =
Õ
di

P„di jθ ”fdi =
Õ

si 2S

Dsi fsi : (6)

The above optimization problem in 1 can be transformed to the

following optimization problem [16],

θ� = argmax

θ
P„Djθ ”

/ argmax

θ
exp f

Õ
si 2D

θTϕ„si ”g

= argmax

θ
exp f

Õ
si 2D

θT fsi g:

(7)

Optimizing Eq. 7 can be done via gradient descent on negative

log-likelihood with the gradient defined by

rθ = f π � ˜f D : (8)

Maximum Entropy Deep IRL. Standard maximum entropy

IRL uses a linear function to map state feature to reward value: r =

θT f . Recently, deep neural networks have demonstrated excellent

performance in visual recognition and feature learning [5]. It can

be beneficial to learn reward function for complex visual inputs

using deep neural networks since this task may be too challenging

for linear reward function. The reward function is defined as r =

д„θ ; f ”, where r is the reward value for state feature f , and θ is

the neural network parameters. In the linear reward function case,

the gradient of the loss function with respect to the parameters is

defined as,

rθL = rr L � rθ r

= rr L � f :
(9)

From equation 8, we know that rθL = f π � ˜f D , which can be

expressed as,

f π � ˜f D = f „Dπ
f � D̃Df ”; (10)

where f is the feature of a particular state,Dπ
f is the agent visitation

frequency of this state, and D̃Df is the expert visitation frequency

of this state. When deep neural network is used to represent the

reward function, the gradient of the loss function with respect to

the parameters can be expressed as,

rθL = rr L � rθ r

= rr L � rθд

= „Dπ
f � D̃Df ” � rθд:

(11)

IRL from Failure. While maximum entropy IRL tries to match

the expected feature counts of the agent’s trajectory with the fea-

ture counts of expert demonstration, it is reasonable to keep the

expected feature counts following current learned reward different

from that of failure experience. The learning from failure algorithm

proposed in [13] demonstrates the possibility of incorporating fail-

ure experience to improve IRL. Given both successful demonstra-

tionsD and failure experience F , we define linear reward function

parameter θd and θf for reward function learned from D and F

respectively. The goal is to maximize the probability of successful

demonstrations, and match the feature expectation of successful

demonstrations, while maximizing the feature expectation differ-

ence with failure experiences. In [13], the optimization problem is

defined as following,

max

π ;w;z
H „D” + wz �

λ

2

kw k2;

subject to:
˜f D = f π ;

f π � ˜f F = z;Õ
a
π „s;a” = 1 8s 2 S;

π „s;a” � 0 8a 2 A;

(12)

where H „D” is the causal entropy of the successful demonstrations

D, and is defined as,

H „D” = �
Õ

t

Õ
s1:t 2S;a1:t 2A

P„a1:t ; s1:t ” log „P„at jst ””; (13)

where P„at jst ” = π „st ;at ” is the policy, and

P„a1:t ; s1:t ” = P„s1:t�1;a1:t�1”T „st�1;at�1; st ”π „st ;at ” (14)

is the probability of trajectory from time 1 to time t . In Eq. 12, w
is the Lagrange multiplier of z, which is a variable representing

the difference between the feature expectation of failure experi-

ences and the feature expectation following current policy π . The
Lagrangian of Eq. 12 gives the following loss function,

L„π ;w; z;θd ;θf ” =H „D” + wz �
λ

2

kw k2

+ θd „f
π � ˜f D ”

+ θf „f
π � ˜f F � z”:

(15)

Following the optimization in [13], the optimization step update

for θd and θf is,

θd = θd � α„f
π � ˜f D ”;

θf =
„f π � ˜f F”

λ
;

(16)

where α is the learning rate for θd and λ is a learning rate for

θf which is annealed throughout the learning. More details of the

learning from failure approach can be found in [13]. The description

of the IRL from failure approach is described in Algorithm 1.

3

Algorithm 1 Deep IRL from Failure (IRLFF)

Require: Failure experienceF , expert demonstrationD
Require: State Transition MatrixT ,� , � � , � ,� t

d , � min , all feature
input f , where� t

d is a deep neural network
Return: Updated reward function� d ; � f
Start:

~f D = FeatureCount ¹Dº (Eq. 4 withD = D)
~f F = FeatureCount ¹F º (Eq. 4 withD = F)

PD
0 = initialStateDistribution¹Dº

PF
0 = initialStateDistribution¹F º

� f = 0
� d = � t

d
Repeat:

r = g¹� d ; f º + � f � gf c1¹� d ; f º
� = SoftValueIteration (r)
f �
F = FeatureExpectation (PF

0 ; � ; T)

f �
D = FeatureExpectation (PD

0 ; � ; T)

� d = � d � � ¹D�
f � ~DD

f º � r � d
g

� f calculated according to Eq. 19
if � > � min :

� = � � �
until convergence

3 HUMAN-INTERACTIVE INVERSE
REINFORCEMENT LEARNING (HI-IRL)

We propose Human-Interactive Inverse Reinforcement Learning
(HI-IRL) to make more e�cient use of human participation beyond
simply providing demonstrations. Di�erent from approaches such
as [16], we require more human-agent interactions during the learn-
ing process by allowing the agent try out subtasks de�ned by a
human and letting the human provide further demonstrations on
subtasks if the agent struggles (we provide formal de�nition of
�struggle� later in this section). Di�erent from approaches such as
DAGGER [12], humans do not need to constantly provide entire
demonstrations; instead demonstrations are obtained only when
required by the agent. There indeed can be other forms of human
interaction when the agent struggles, some of which are compared
to as baselines in the experiments. For example, the human may
continue to provide the entire demonstrations when the agent strug-
gles, similar to the approach in [12]. However, we �nd this method
of interaction to be less e�ective. A second possibility is to simply
let the agent try the same task repeatedly, until it happens to �nish
the task. Then, the successful trajectory that the agent experienced
can be used as human demonstration. However, this approach is
limited in scenarios with large state spaces. In addition to being
highly ine�cient, even if the agent reaches the goal, the trajec-
tory that the agent traveled may not be an optimal or a desired
trajectory. In contrary, we show that our method of structuring the
interaction enables better e�ciency on complex tasks. Next, we
�rst describe our method, HI-IRL, and then give a demonstration
of the optimality of our subgoal selection strategy.

3.1 HI-IRL
Step 1: Human expert provides several full demonstrations
and de�ne subgoals . Given a task consisting of multiple decision
making steps, the human expert will �rst provideN full demonstra-
tions D = fd0; � � � ;dN g completing the entire task. The number
of demonstrations inD can be relatively small, for example, 1 or 2
demonstrations to learn an initial reward function. The human ex-
pert will then dissect the entire task into several parts by indicating
critical subgoal states where the agent must go through in order to
achieve the overall task. For example, in an indoor navigation task,
the agent tries to �nd a way from one room to anther, the state
when the agent is at the exit between the two rooms is a critical
subgoal state. While trajectories with di�erent starting position in
the �rst room and di�erent goal position in the second room varies,
they all need to go through the critical state corresponding to the
exit.

We denote these critical subgoal states asSsub. One typical
characteristics of these subgoal states is that the probability of any
expert trajectories to include them will be close to 1,

P¹si 2 dj º � 1; 8si 2 Ssub and8dj 2 D : (17)

The reason why it may not be 1 is to allow cases where there
are multiple states functioning very similar as subgoal states. For
instance, there are multiple exits from one room to another in
the indoor navigation example. In this case, the probability of any
expert trajectories to include any one of these states will be 1.

Given these subgoal statesSsub, any trajectory� = fs0; � � � ;sk g
can be dissected into several subtasksTsub = fd1;d2; � � � ;dm g,
wherem is the number of subtasks within this trajectory� , and
concatenating these subtasks together will get the original trajec-
tory � . The starting state and end state of each of these subtasks
exceptd1 anddm belong toSsub. The end state and starting state of
d1 anddm , respectively, belong toSsub. A more formal de�nition
of trajectory dissection is to consider all possible trajectories from
a chosen start state to goal state as a set� = f � 1; � � � ; � x g, and
subgoal states are de�ned by,

Ssub =
xÙ

i =1

� i : (18)

Step 2: Agents tries the de�ned subtasks . Starting from a ran-
domly selected starting statesr , the agent will be required to reach
each of the subgoals sequentially towards the ultimate statesgoal .
This means that given the optimal path from the agent's current
statesr to the goal statesgoal : � sr ! sgoal = fsr ; � � � ;ssub1; � � � ;
ssub2; � � � ;ssubk; � � � ;sgoal gwhere the agent is expected to reach
subgoal states along the path fromssub1 to ssubk sequentially. If the
agent successfully arrives to subgoalssubi within stepmin ;ssubi +
stepthr , the agent will be required to reach the next subgoalssub¹i +1º
starting from current statessubi . Here,stepmin ;ssubi is the mini-
mum steps required to reachssubi from the start statesr , and
stepthr is the extra threshold steps to allow some exploration.

Step 3: Human provides further demonstrations if needed .
Depending on the performance of the agent on the subtasks, if the
agent successfully �nished all subtasks, then the human expert
will not provide further demonstrations. The human expert will
only provide demonstrations on subtasks that the agent struggles.

4

Figure 3: Subgoals speci�ed in 12x12, 16x16, 32x32 grid world environment, and car parking environment. In the grid world
environment, states are de�ned as the grid position the agent is current at (speci�ed by red box), goals are represented by green
box, and subgoals are indicated by red stars. In the car parking environment, states are de�ned as the car global coordinate
as well as the orientation of the car, which can be represented by an arrow. The subgoals in the car parking environment is
speci�ed by a set of red arrows.

Algorithm 2 Human-Interactive Inverse Reinforcement Learning
(HI-IRL)

Require: Set of initial demonstrationsd0, T, State Transition
Matrix T , � 0, all state raw featuref , and humanH .
Return: Reward function� T+1

De�ne: D : positive demonstrations;F : failure experience;E:
agent experience;Ssub: set of subgoal states
Start:

Ssub = specify_subgoals(H)
D = d0;
� 1 = MaxEntIRL(D , � 0)
for t 2 1;2; :::;T

E = Rollout (� t , Ssub)
for e in E

F ; D = UpdateDemo(e, � t , D)
� t +1

d ; � t +1
f = IRLFF(F ; D , T , � t

d , f) (Alg. 1)

� t +1 = ¹� t +1
d ; � t +1

f º

For example, if the agent is not able to complete a subtask ending
in subgoalssubi , then human will provide further demonstrations
on this subtask. Since these additional demonstrations may not be
complete demonstrations starting from the very beginning state to
the ultimate goal state, we refer to these demonstrations aspartial
demonstrations. The initial demonstrations mentioned in step 1 are
referred asfull demonstrations. This intuitive interaction scenario
is formally de�ned below.

Suppose the agent is given a subtask to go from statesi to
statesj . The minimum number of steps to travel fromsi to sj is
stepmin ;si ! sj , and to allow some level of exploration, the agent
will be given extrastepthr steps to reachsj . The valuestepthr de-
pends on the di�culty of speci�c task, if the task is fairly di�cult,
we set it to a high value, otherwise, we set it to a low value. In
our approach this value can be regarded as a hyper-parameter that
needs to be tuned. Struggling is de�ned as the scenario where the
agent is not able to reachsj within stepthr + stepmin ;si ! sj . Here,
the human will provide further demonstrations on this particular
task (fromsi to sj).

Step 4: Learning reward function from both failure experi-
ences and expert demonstrations . When the agent fails to �nish
some subtasks, it gains failure experiences, denoted asF . These
demonstrations are not given by human, but instead by the learning
agent itself. The expert's further demonstrations are denoted as
D , which already includes the initial full demonstrations. Since
learning from failure approaches [13] generally focus on the linear
reward function case, we propose to use a deep neural network
to extract features from raw states, and then use a linear reward
function to get reward value from these extracted features.

Our deep neural network reward function takes in input in the
form of raw states (i.e., images) and process it with three con-
volutional layers with each one followed by batch normalization
layers and ReLU activation. Two fully connected layers are fol-
lowed to output the �nal reward value. The last layer outputs a
scalar value which will be used as the reward value corresponding
to � d in Eq. 16. The second last layer output vector will be used
to calculate� f in Eq. 16. If we denote the network parameters as
� d = fconv;bn;ReLU;FC1; FC2g, the network input asf , and the
network function asrd = g¹� d ; f º, then we have

FC1;out = g¹conv;bn;ReLU;FC1; f º � gf c1¹� d ; f º

� f =
FC�

1;out � fFC
F
1;out

�

(19)

Here � d will be the neural network and� f will be a vector of
the same size asFC1;out , FC�

1;out is the feature expectation fol-

lowing the current policy� , and fFC
F
1;out is the feature expecta-

tion of failure experienceF . The �nal reward function will be
r = g¹� d ; f º + � f � gf c1¹� d ; f º. The detailed learning from both
failure experience and expert demonstration algorithm is described
in Algorithm 2.

3.2 Optimality of Subgoal Selection
In HI-IRL, the human will specify critical subgoal statesSsub
which have a very high probability to be included in any expert
demonstrations, and other non-critical states will have relatively
lower probability to be included in any expert demonstrations.
De�ne Snc � S n Ssub as all states except human de�ned sub-
goal states. Given two trajectories� 1 = fs1;0;s1;1; � � � ;s1;k g and

5

� 2 = fs2;0;s2;1; � � � ;s2;k g, wheres1;i = s2;i ; 8i 2 f0; � � � ;k � 1g,
ands1;k 2 Ssub ands2;k 2 Snc , intuitively, � 1 will be favored over
� 2,

P¹� 1º > P¹� 2º

) exp
kÕ

i =1

r ¹s1;i º > exp
kÕ

i =1

r ¹s2;i º;

) r ¹s1;k º > r ¹s2;k º;

(20)

which means that critical subgoal states will have higher reward
than non-subgoal states around them. In the linear reward function
case, the reward function parameter� is optimized when,

~f D =
jS jÕ

i =1

Dsi fsi ; (21)

which means the �nal policy will favor states that appear more
times in expert demonstrationsD in order to match the feature
expectation ofD . Given two statess1 ands2, and de�nep¹s1; Dº
as the frequency ofs1 appears inD , the same fors2, and suppose
p¹s1; Dº > p¹s2; Dº, then we have,

Ds1 > Ds2

) P¹� 1js1 2 � 1º > P¹� 2js2 2 � 2º;
(22)

where � 1 and � 2 are two trajectories, where all other states are
same, except that� 1 containss1 while � 2 containss2. Given Eq. 20,
we know thatr ¹s1º > r ¹s2º, which means states that appear more
times in expert demonstrations will typically have higher rewards.
Therefore, in order to make sure those critical states have higher
rewards, we must increase the demonstrations around them. By
letting human specify these critical states, and providing extra
demonstrations if the agent struggles, we ensure that these states
receive more attention during demonstration collection, which
leads to better reward function learning.

4 EXPERIMENTS
We designed the experiment parts to demonstrate the key contribu-
tions of our proposed HI-IRL method.First , we demonstrate that
by leveraging human interaction in inverse reinforcement learning,
we obtain better data e�ciency than traditional inverse reinforce-
ment learning approach that trains on o�ine collected data (the
standard maximum entropy IRL method).Second, we provide a
better human interaction strategy where the burden on human can
be reduced compared with existing methods such as [12]. Third ,
we demonstrate that by carefully selecting the key subgoals, it
achieves better reward function learning than random selection
of subgoals. The experimental environments are designed to be
complex sequential decision making process with critical subgoal
states that the agent must go through in order to complete the
overall task.

Baselines. In order to show the key contributions of our HI-IRL
method, we compare our algorithm with (1) maximum entropy IRL
(here after denoted asMaxEntIRL); (2) human interactive IRL with-
out specifying subgoals (here after denoted asHI-IRLwos), which
is similar to approach like [12]; and (3) human interactive IRL with
randomly selected subgoals (here after denoted asHI-IRLwr). In
human interactive IRL without specifying subgoals, the procedure

is similar to our method, except that the agent will be required to
complete entire task and human expert will provide full demon-
strations if the agent struggles. The purpose of comparing with
MaxEntIRLis to show the bene�ts of interacting with human during
the learning process (our�rst contribution). While bothHI-IRLwos
andHI-IRLwr have human interaction,HI-IRLwostries to provide
the entire demonstration again which contains redundancy and
increases human burden;HI-IRLwr tries to provide demonstrations
for randomly selected subtasks, which fails to emphasize on crit-
ical subgoal states, and may lead to ill reward function learning.
The purpose of comparing withHI-IRLwosis to show the bene�ts
of subgoal selection as it reduces human burden to demonstrate
entire task (oursecondcontribution). The purpose of comparing
with HI-IRLwr is to show the bene�ts of selecting critical subgoals
instead of random subgoals (ourthird contribution).

We performed several sets of experiments in grid-world and car
parking environments spanning di�erent scales of state space. All
environments contain critical subgoal states that the agentmustgo
through to complete the entire task. In all experiments, we use deep
neural network to represent reward function. In the grid-world
environment, the network is composed of three layers of convolu-
tional neural network with each followed by a batch normalization
layer and ReLU activation layer, then two fully connected layers
are followed to output the �nal reward value. In the car parking
environment, the network is similar to the network in grid-world
environment, except there are 2 convolutional layers due to smaller
input image size.

Grid-world Environment . The grid-world environment in-
volves grid-world navigation where the agent is put in a place
at the beginning and the task is to �nd a way to a target position.
In this experiment, grid-world of di�erent scales of state space are
used for evaluation. Speci�cally, a 12x12, a 16x16, and a 32x32 grid-
world environment are used. Regions in the grid-world where there
are obstacles are not counted towards agent state. The state space
in this game is the grid world image, and the action space consists
of 5 actions, stay in place, go up, go down, go left and go right.

Since all four methods require some initial human demonstra-
tion to learn a reward function, a certain number of human demon-
strationsD are collected at the beginning. In both the gridworld
environment and car parking environment, we have �nite number
of states and the optimal path from one state to another can be au-
tomatically solved by using the Dijkstra algorithm [14]. Therefore,
we generate the demonstration automatically instead of getting
them from real human. However, human expert will specify crit-
ical subgoal statesSsub to be used in our method. A set of test
starting state will be speci�ed by human that is di�erent from the
training dataD . ThenD is used to get the reward function fol-
lowing MaxEntIRLmethod. One demonstration randomly sampled
from D will be used for training initial reward function for our
method,HI-IRLwosmethod, andHI-IRLwr method. InHI-IRLwos,
the agent will be required to start from a randomly selected start-
ing state, and �nd a way to the �nal target state, and human will
provide further demonstration if the agent struggles. InHI-IRLwr,
randomly selected subgoals will be used to de�ne subtasks, and the
agent will try to complete these subtasks, and human will provide
further demonstrations if needed. All four methods are trained with

6

(a) (b) (c) (d)

Figure 4: Number of demonstration steps VS number of steps used to complete the same test tasks curve. (a): 12x12 Grid-world;
(b) 16x16 Grid-world; (c) 32x32 Grid-world. (d) Car parking environment.

the same learning rate and number of iterations. Di�erent num-
ber of demonstrations are used to train reward function and then
evaluate on the same test task 5 times to get the mean value of test
performance.

Car-Parking Environment . Parking a car into a garage spot
involves driving the car to a place near the slot, adjust the orien-
tation of the car and drive the car into the parking box without
hitting obstacles. In this environment, it is critical that the car has
to stop at a certain state near the parking slot to ensure that after
adjusting the orientation, the car will not hit obstacles. The car
parking environment interface is shown in Figure 1. The number
of agent possible states is about 5k � much larger than the state
space in the grid-world environment. The state of this game is the
car parking interface, and the action space consists of stay in place,
move forward, move back, rotate to the left and rotate to the right.

At the beginning, human demonstrations and human speci�ed
subgoals are collected. Then follow the same procedure as in the
grid-world environment, we obtained training results for all four
methods. The subgoals selected for each environment is visualized
in Figure 3.

4.1 Results and Analysis
Grid-world Environment . The number of demonstration steps
versus number of steps used to complete the same test tasks curve
is shown in Figure 4, which includes the results for all four methods.
The test task is to set the agent at some initial states on the top
left region in the grid world, and then require the agent to travel
to the same destination as in training time. Since the goal of our
approach is to reduce the burden of human, for example, the hu-
man will provide less demonstrations, the results indicate that our
method achieves better human interaction e�ciency and the agent
learns to complete the same test task with less but more informa-
tive demonstration from human. The reason why theMaxEntIRL
method works worse than the other three methods is that there are
much more training data to learn from in this method. Therefore,
it may require more iterations to train, which is another burden of
this method. TheHI-IRLwr method works in the 12-by-12 state size
case, but does not work in the 16-by-16 state size case. The reason
is that the subgoals are randomly selected, which means there is
a probability that they are selected to be near the critical subgoal

states, achieving similar performance as our method. Our method
uses slightly more steps to complete the test task in the 32-by-32
grid-world at initial training than HI-IRLwosmethod. However, as
indicated in the �gure, we can use less steps of demonstrations but
achieve similar performance.

Car-Parking Results . The car-parking results include the num-
ber of demonstrations versus number of steps to complete the same
test tasks curve shown in Figure 4. Our method achieves near ora-
cle performance with less demonstrations from human than other
baselines. Since this MDP contains much richer states (in total 5k
states) than previous MDPs, this experiment demonstrates that our
method has the abilility to generalize to large state space case.

5 RELATED WORK
Inverse Reinforcement Learning (IRL) . IRL is a method that in-
fers a reward function given a set of expert demonstrations [1, 10].
One of the key assumptions of IRL is that the observed behavior is
optimal (maximizes the sum of rewards). Maximum entropy inverse
reinforcement learning [16] employs the principle of maximum en-
tropy to learn a reward function that maximizes the posterior prob-
ability of expert trajectories. Though [16] relaxes the optimality
constraints, it cannot handle signi�cantly suboptimal demonstra-
tions. [16] also does not consider the redundancy of demonstrations.
In our case, since we have both agent's failure experience as de�ned
later and expert's demonstrations, we can leverage the failure ex-
perience to improve the current reward. By using human feedback
interactively in the training, our method aims to ultimately improve
the reward inference process. By interacting with the human only
when needed, we are also able to reduce the amount of human
involvement (i.e.,redundant demonstration data).

Human-in-the-Loop IRL . Leveraging di�erent types of hu-
man input during training has been previously shown to improve
performance accuracy and learning e�ciency. In [3], the human
and robot collaborate with each other to maximize the human's
reward. Yet, [3] assumes that the underlying reward function for
every state is visible for the human, which may not be practical for
many RL problems. One reason for this is that the human usually
knows what action to take under a speci�c state, but it is hard to
infer the value function of states as it triggers another IRL problem.
In [11], agents constantly seek advice from a human for clustered

7

	Abstract
	1 Introduction
	2 Background
	3 Human-Interactive Inverse Reinforcement Learning (HI-IRL)
	3.1 HI-IRL
	3.2 Optimality of Subgoal Selection

	4 Experiments
	4.1 Results and Analysis

	5 Related Work
	6 Conclusions and Remarks
	References

